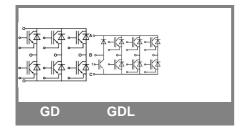


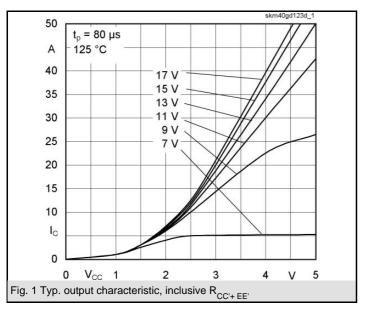
SEMITRANSTM 6

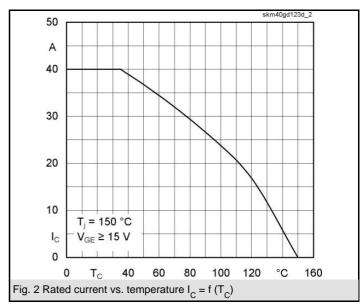
Sixpack

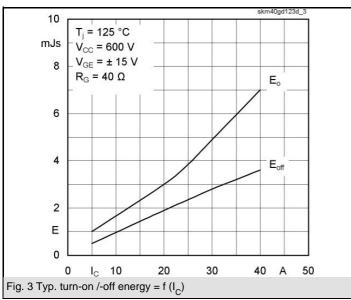
SKM 40GD123D SKM 40GDL123D

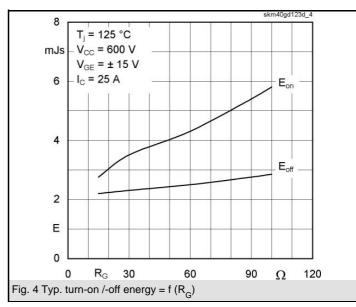
Features

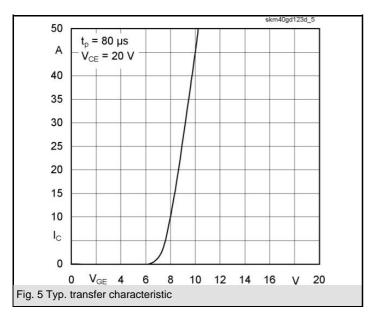

- MOS input (voltage controlled)
- N channel, homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (9 mm) and creepage distances (13 mm)

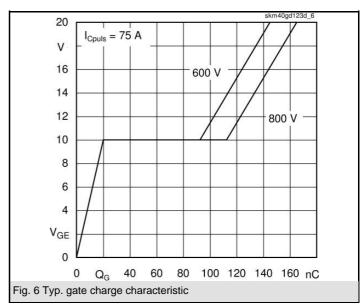

Typical Applications

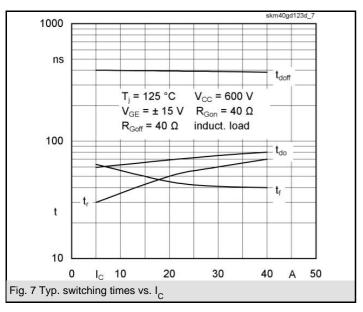

- Switched mode power supplies
- Three phase inverters for AC motor speed control
- Pulse frequencies also above 15 kHz

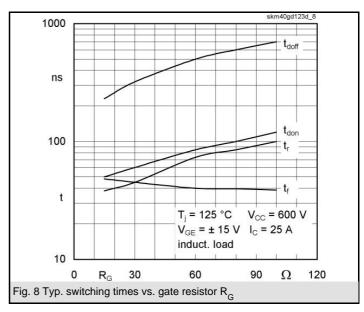

Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT		·	•					
V_{CES}		1200	V					
I _C	$T_c = 25 (80) ^{\circ}C$	40 (30)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}C, t_p = 1 \text{ms}$	70 (50)	Α					
V_{GES}	·	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40+ 150 (125)	°C					
V_{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	45 (30)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	70 (50)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	350	Α					

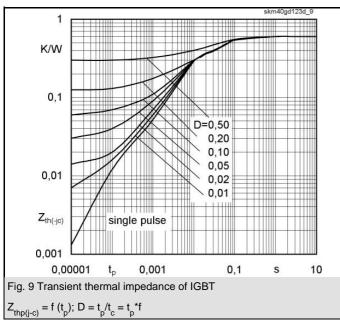

Characte	ristics	$T_c = 25 ^{\circ}C$	T _c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT			,,			
$V_{GE(th)}$	$V_{GF} = V_{CF}$, $I_{C} = 1 \text{ mA}$	4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_i = 25$ (125) °C		0,3	0,9	mA	
$V_{CE(TO)}$	T _i = 25 (125) °C		1,4 (1,6)	1,6 (1,8)	V	
r _{CE}	$V_{GE} = 15 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		44 (60)	56 (76)	mΩ	
V _{CE(sat)}	$I_C = 25 \text{ A}, V_{GE} = 15 \text{ V}, \text{ chip level}$		2,5 (3,1)	3 (3,7)	V	
C _{ies}	under following conditions		1,6	2,1	nF	
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 \text{ V}$, $f = 1 \text{ MHz}$		0,25	0,3	nF	
C _{res}			0,11	0,15	nF	
L _{CE}				60	nH	
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C				mΩ	
t _{d(on)}	V _{CC} = 600 V, I _C = 25 A		70		ns	
t _r	$R_{Gon} = R_{Goff} = 40 \Omega$, $T_j = 125 °C$		55		ns	
$t_{d(off)}$	V _{GE} = ± 15 V		400		ns	
t _f			40		ns	
$E_{on} (E_{off})$			3,8 (2,3)		mJ	
Inverse d	iode					
$V_F = V_{EC}$	$I_F = 25 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V	
$V_{(TO)}$	T _j = 125 () °C		1,1	1,2	V	
r_T	T _j = 125 () °C		25	44	mΩ	
I _{RRM}	I _F = 25 A; T _j = 25 (125) °C		19 (25)		Α	
Q_{rr}	di/dt = 500 A/µs		1,5 (4,5)		μC	
E _{rr}	V _{GE} = V				mJ	
Thermal of	characteristics					
$R_{th(j-c)}$	per IGBT			0,56	K/W	
$R_{th(j-c)D}$	per Inverse Diode			1	K/W	
$R_{\text{th(c-s)}}$	per module			0,05	K/W	
Mechanic	al data					
M_s	to heatsink M5	4		5	Nm	
M_t	to terminals				Nm	
W				175	g	

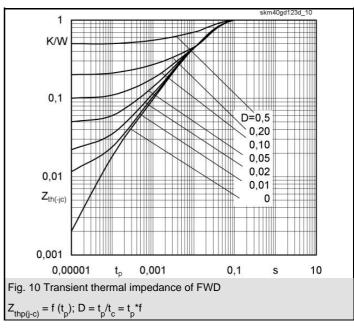


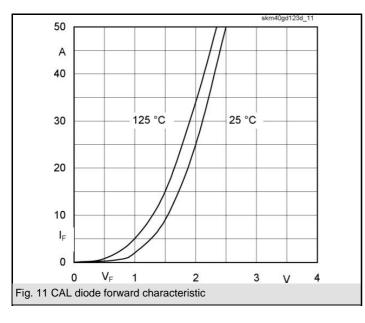


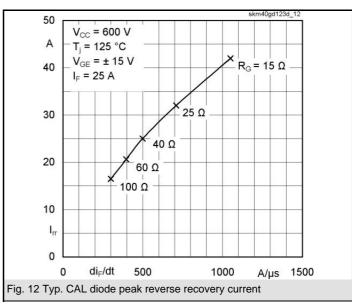


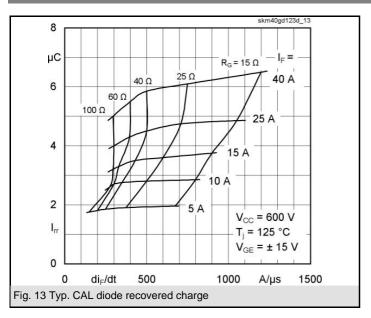


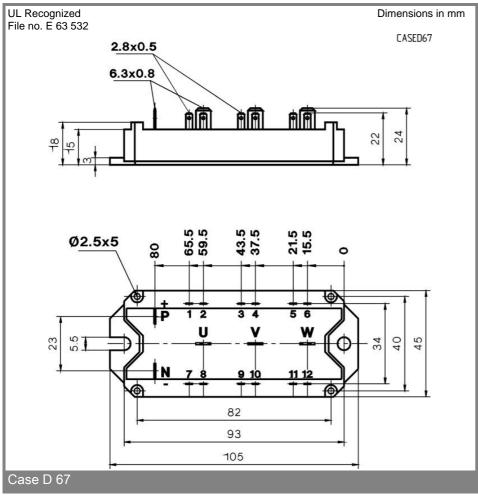


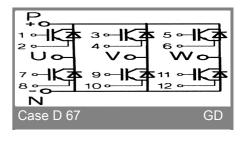


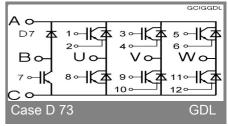












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.