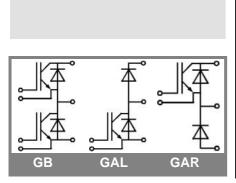
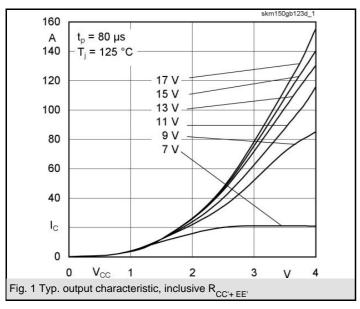


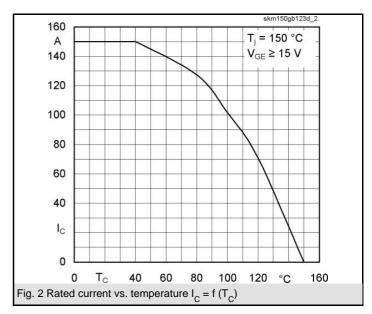
IGBT Modules

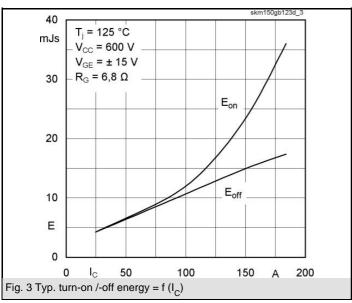

SKM 150GB123D SKM 150GAL123D SKM 150GAR123D

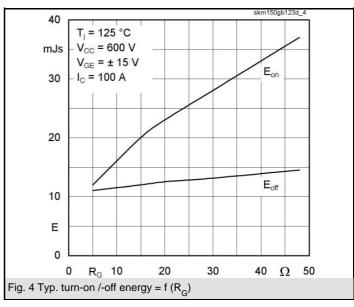
Features

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- Large clearance (12 mm) and creepage distances (20 mm)

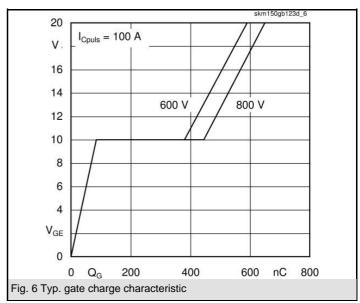

Typical Applications

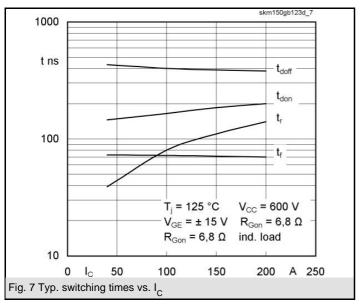

• Switching (not for linear use)

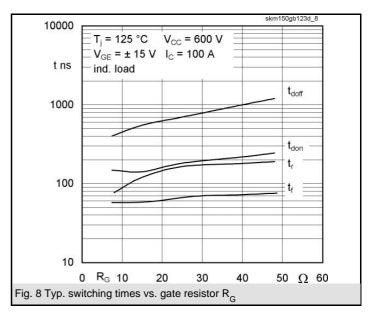


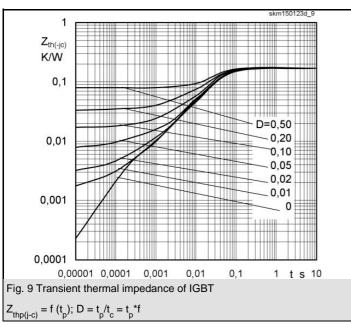

Absolute Maximum Ratings T _c = 25 °C, unless otherwise speci							
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
I _C	T _c = 25 (80) °C	150 (110)	Α				
I _{CRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	300 (220)	Α				
V_{GES}	·	± 20	V				
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F	T _c = 25 (80) °C	150 (100)	Α				
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	300 (220)	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	1100	Α				
Freewheeling diode							
I _F	T _c = 25 (80) °C	200 (135)	Α				
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	300 (220)	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1450	А				

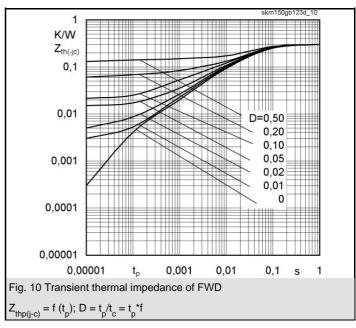

Characte	ristics	T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT		·					
$V_{GE(th)}$ I_{CES}	$V_{GE} = V_{CE}, I_{C} = 4 \text{ mA}$ $V_{GE} = 0, V_{CE} = V_{CES}, T_{i} = 25 (125) ^{\circ}\text{C}$	4,5	5,5 0,1	6,5 0,3	V mA		
V _{CE(TO)}	T _i = 25 (125) °C		1,4 (1,6)	1,6 (1,8)	V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		11 (15)	14 (19)	mΩ		
V _{CE(sat)}	I_C = 100 A, V_{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V		
C _{ies}	under following conditions		6,5	8,5	nF		
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		1	1,5	nF		
C _{res}			0,5	0,6	nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
$t_{d(on)}$	V _{CC} = 600 V, I _C = 100 A		160	320	ns		
t _r	R_{Gon} = R_{Goff} = 6,8 Ω , T_j = 125 °C		80	160	ns		
t _{d(off)}	V _{GE} = ± 15 V		400	520	ns		
t _f			70	100	ns		
E _{on} (E _{off})			13 (11)		mJ		
Inverse diode							
$V_F = V_{EC}$	$I_F = 100 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V		
V _(TO)	T _j = 125 () °C			1,2	V		
r _T	$T_j = 125 \text{ () } ^{\circ}\text{C}$		8	11	mΩ		
I _{RRM}	I _F = 100 A; T _j = 25 (125) °C		35 (50)		A		
Q _{rr}	di/dt = 1000 Å/μs		5 (14)		μC		
E _{rr}	V _{GE} = V				mJ		
FWD							
$V_F = V_{EC}$	$I_F = 100 \text{ A; V}_{GE} = 0 \text{ V, T}_j = 25 (125) ^{\circ}\text{C}$		1,85 (1,6)	2,2	V		
V _(TO)	T _j = 125 () °C		_	1,2	V		
r _T	T _j = 125 () °C		5	7	mΩ		
I _{RRM}	I _F = 100 A; T _j = 25 (125) °C di/dt = A/μs		40 (65) 5 (15)		μC		
Q _{rr}	•		3 (13)				
E _{rr}	V _{GE} = V				mJ		
	characteristics	Ī		0.1-	1 1200		
R _{th(j-c)}	per IGBT			0,15	K/W		
$R_{th(j-c)D}$	per Inverse Diode			0,3	K/W K/W		
R _{th(j-c)FD}	per FWD			0,25			
R _{th(c-s)}	per module			0,038	K/W		
Mechanic		1 -		_			
M _s	to heatsink M6	3		5	Nm		
M _t	to terminals M6	2,5		5	Nm		
W				325	g		

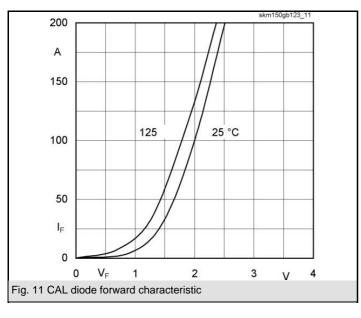


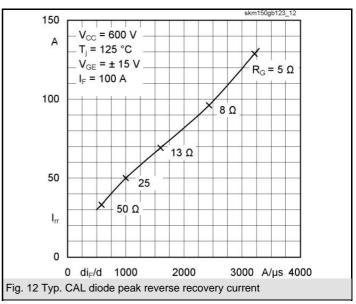


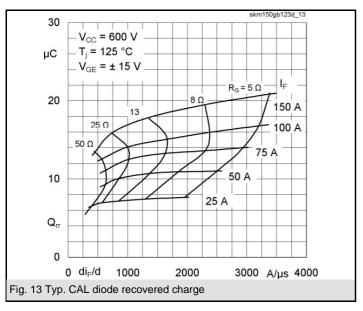


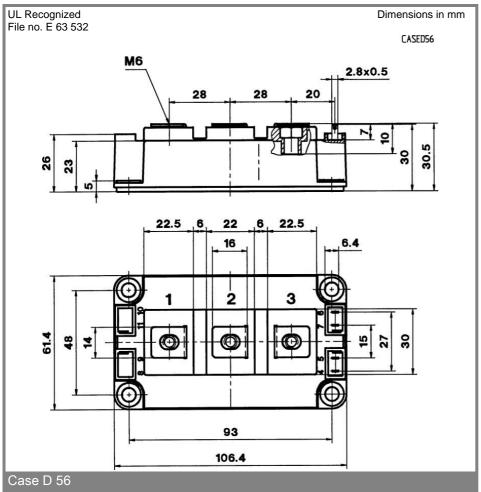


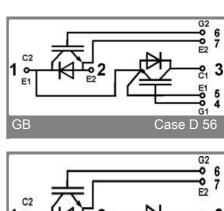


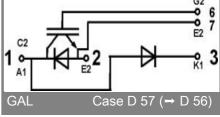


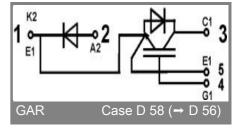












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.