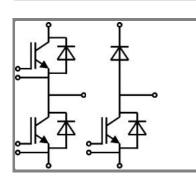


SEMITRANS[®] 2

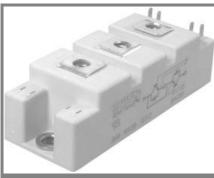
IGBT Modules


SKM 50GB123D SKM 50GAL123D

Features

- MOS input (voltage controlled) •
- Low inductance case
- Low tail current with low temperature dependence
- High short circuit capability, self limiting to 6xI_{CNOM} • Fast and soft CAL diodes
- Isolated copper base plate using DCB (Direct Copper Bonding Technology)

Typical Applications


- AC inverter drives
- Power supplies

Absolute	Maximum Ratings	T _c =	25 °C, unless otherwise sp	pecifie
Symbol	Conditions		Values	Unit
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	50	А
		T _{case} = 80 °C	40	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		100	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V;	T _i = 125 °C	10	μs
F	VCES < 1200 V	,		
Inverse D	Diode			•
I _F	T _j = 150 °C	T _{case} = 25 °C	50	А
		T _{case} = 80 °C	40	А
I _{FRM}	$I_{FRM} = 2 x I_{Fnom}$		100	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	550	А
Freewhee	eling Diode			
I _F	T _j = 150 °C	T _{case} = 25 °C	50	А
		T _{case} = 80 °C	40	А
I _{FRM}	IFRM = 2xIFnom		100	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	550	А
Module				•
I _{t(RMS)}			200	А
T _{vj}			- 40+150	°C
T _{stg}			125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics $T_c =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,1	0,3	mA	
		T _j = 125 °C				mA	
V _{CE0}		T _j = 25 °C		1	1,15	V	
		T _j = 125 °C		0,9	1,05	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		30	37	mΩ	
		T _j = 125°C		44	53	mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V			2,5	3	V	
		T _j = 125°C _{chiplev.}		3,1	3,7	V	
C _{ies}				3,3		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,5		nF	
C _{res}				0,2		nF	
Q_{G}	V _{GE} = -8V - +20V			500		nC	
R _{Gint}	T _j = °C			2,5		Ω	
t _{d(on)}				70		ns	
t,	R _{Gon} = 27 Ω	V _{CC} = 600V		60		ns	
Ė _{on}		I _{Cnom} = 40A		7		mJ	
t _{d(off)}	R _{Goff} = 27 Ω	T _j = 125 °C		400		ns	
t _f				45		ns	
E _{off}				4,5		mJ	
R _{th(j-c)}	per IGBT				0,4	K/W	

GB GAL

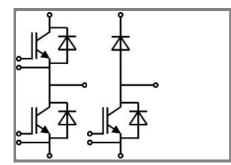
SEMITRANS[®] 2

IGBT Modules

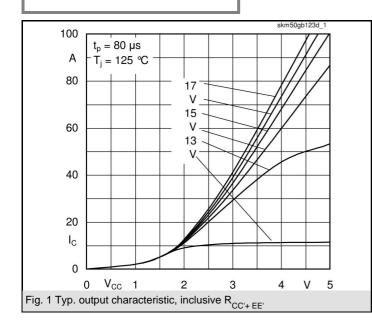
SKM 50GB123D SKM 50GAL123D

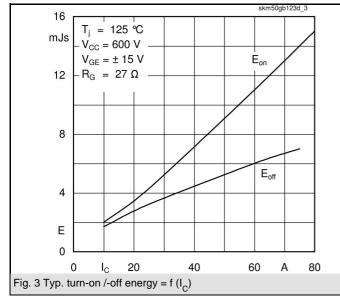
Features

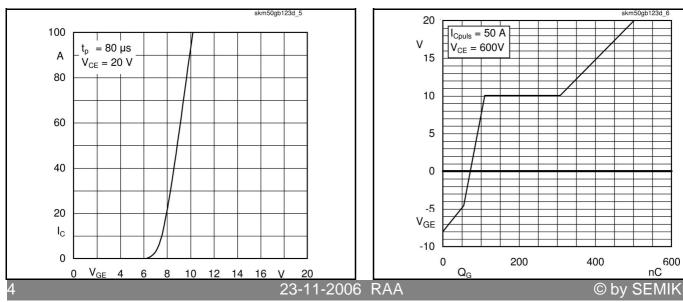
- MOS input (voltage controlled)
- Low inductance case
- Low tail current with low temperature dependence
- High short circuit capability, self limiting to 6xI_{CNOM} Fast and soft CAL diodes
- Isolated copper base plate using DCB (Direct Copper Bonding Technology)

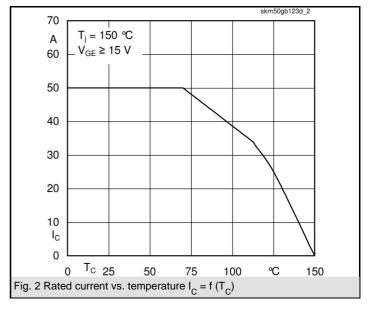

Typical Applications

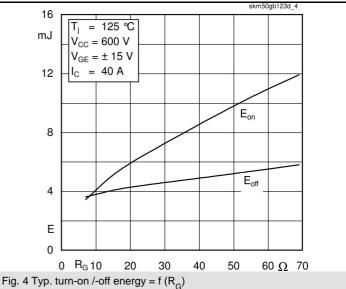
- AC inverter drives
- Power supplies

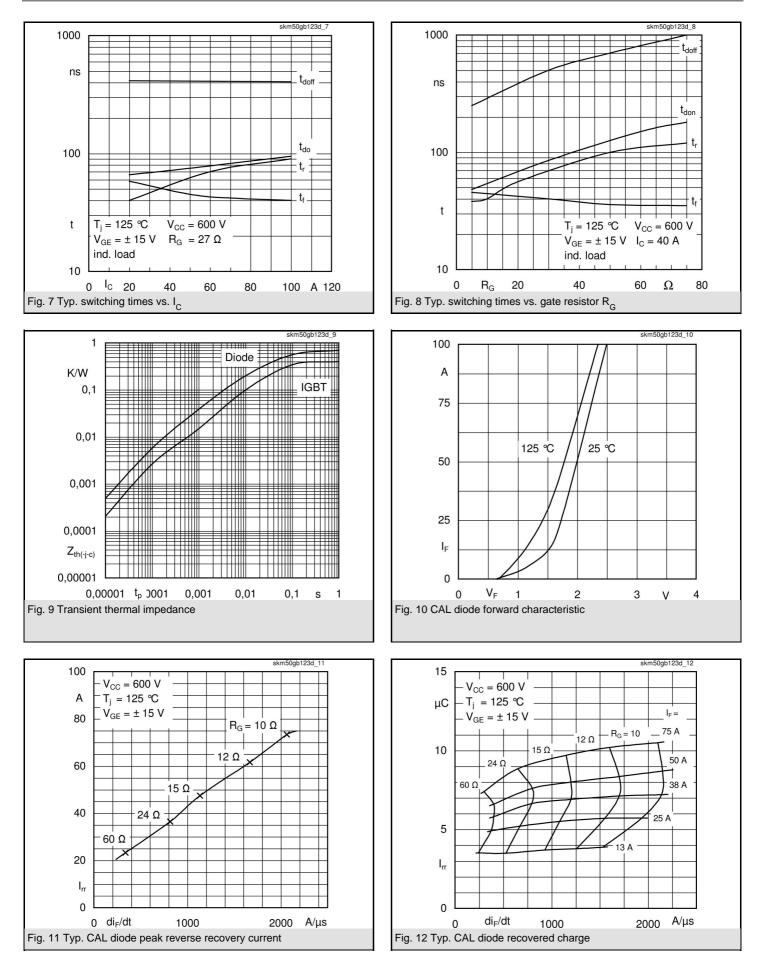

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	,		2	2,5	V
		$T_j = 125 \ ^{\circ}C_{chiplev.}$		1,8		V
V _{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		18	26	mΩ
		T _j = 125 °C			22	mΩ
IRRM	I _{Fnom} = 40 A	T _j = 125 °C		35		Α
Q _{rr}	di/dt = 800 A/µs			7		μC
E _{rr}	V _{cc} = 600V			2		mJ
R _{th(j-c)}	per diode				0,7	K/W
Freewhee	eling Diode					
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		$T_j = 125 \ ^{\circ}C_{chiplev.}$		1,8		V
V _{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		18	26	V
		T _j = 125 °C				V
IRRM	I _{Fnom} = 40 A	T _j = 125 °C		35		Α
Q _{rr}	di/dt = 800 A/µs			7		μC
E _{rr}	V _{cc} = 600V			2		mJ
R _{th(j-c)}	per diode				0,7	K/W
Module						
L _{CE}					30	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,75		mΩ
		T _{case} = 125 °C		1		mΩ
R _{th(c-s)}	per module				0,05	K/W
M _s	to heat sink M6		3		5	Nm
Mt	to terminals M5		2,5		5	Nm
w					160	g

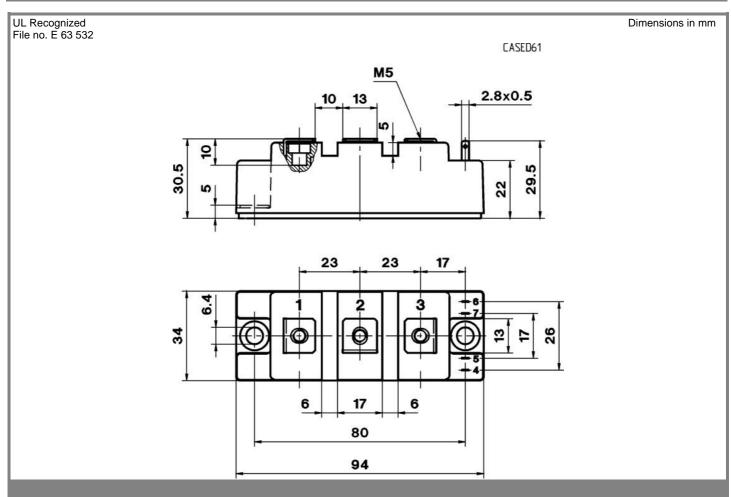

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.









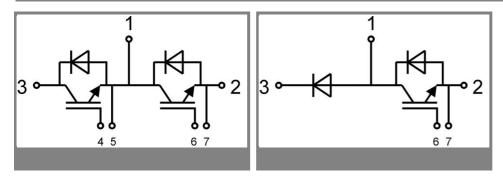

© by SEMIKRON

Fig. 5 Typ. transfer characteristic

Fig. 6 Typ. gate charge characteristic

