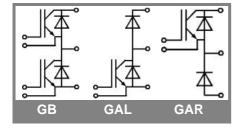


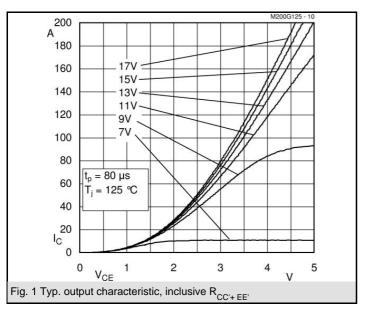
Ultra Fast IGBT Modules

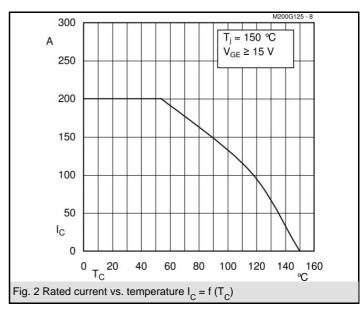
SKM 200GB125D SKM 200GAL125D SKM 200GAR125D

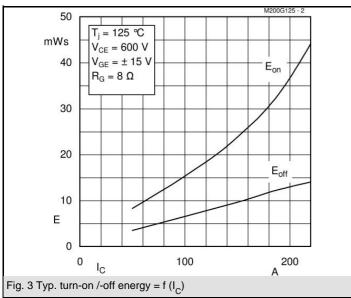
Features

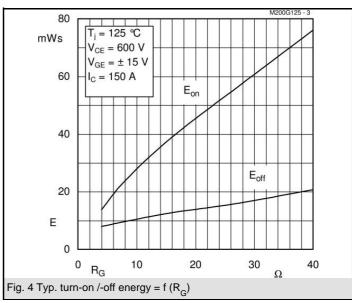
- N channel, homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}

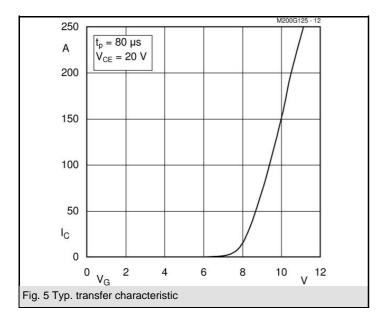

 Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology
- Large clearance (13 mm) and creepage distance (20 mm)

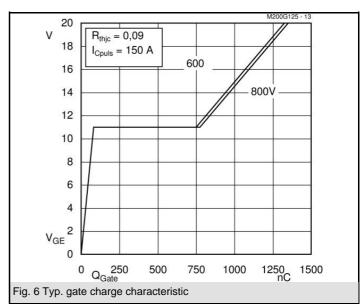

Typical Applications

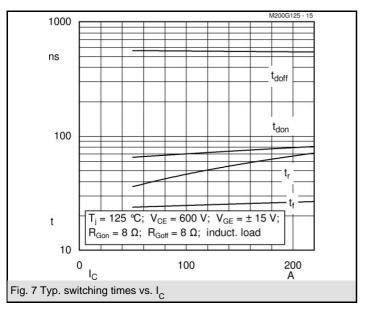

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

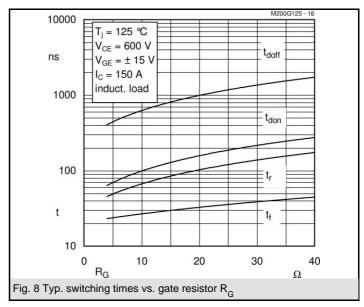

Absolute Maximum Ratings		T _c = 25 °C, unless otherwise s	_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V _{CES}	$T_c = 25 (80) ^{\circ}C$	200 (160)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	400 (320)	Α					
V_{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	200 (130)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	400 (320)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	1450	А					

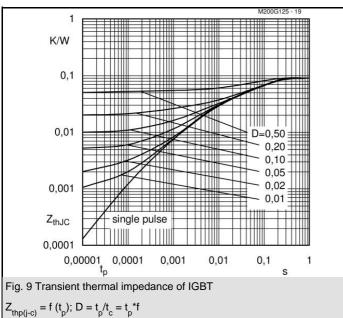

Characteristics		$\Gamma_{\rm c}$ = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT		•			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$	4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ (125) °C		0,15	0,45	mA
$V_{CE(TO)}$	T _j = 25 (125) °C		1,5	1,75	V
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		12	14	mΩ
$V_{CE(sat)}$	I_C = 150 A, V_{GE} = 15 V, chip level		3,3	3,85	V
C _{ies}	under following conditions		10	13	nF
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 V$, $f = 1 MHz$		1,5	2	nF
C _{res}			0,8	1,2	nF
L _{CE}				20	nH
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ
$t_{d(on)}$	V _{CC} = 600 V, I _C = 150 A		75		ns
t _r	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 °C$		36		ns
$t_{d(off)}$	V _{GE} = ± 15 V		420		ns
t_{f}			25		ns
E _{on} (E _{off})			14 (8)		mJ
Inverse diode					
$V_F = V_{EC}$	$I_F = 150 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V
$V_{(TO)}$	T _j = 125 () °C			1,2	V
r_T	T _j = 125 () °C		5	7	mΩ
I _{RRM}	I _F = 150 A, T _j = 25 () °C		55 (80)		A
Q_{rr}	di/dt = A/µs		8 (20)		μC
E _{rr}	V _{GE} = V				mJ
Thermal	characteristics				
$R_{th(j-c)}$	per IGBT			0,09	K/W
$R_{th(j-c)D}$	per Inverse Diode			0,25	K/W
$R_{\text{th(c-s)}}$	per module			0,038	K/W
Mechani	cal data				
M_s	to heatsink M6	3		5	Nm
M_t	to terminals M6				Nm
W				325	g

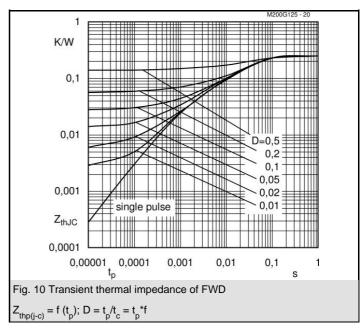


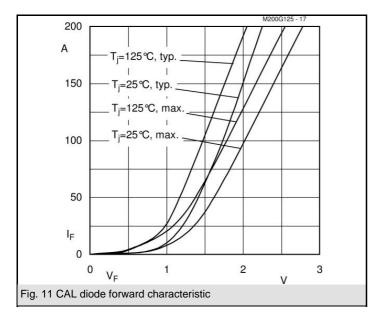


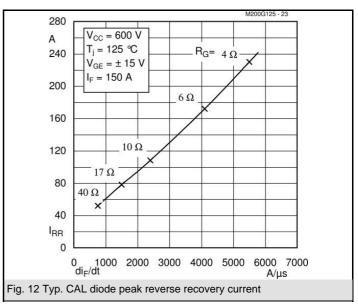


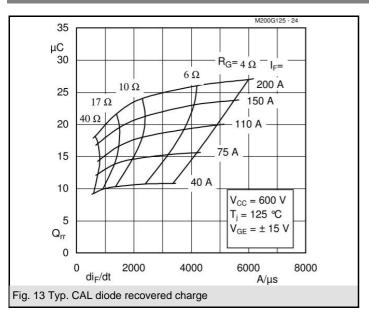


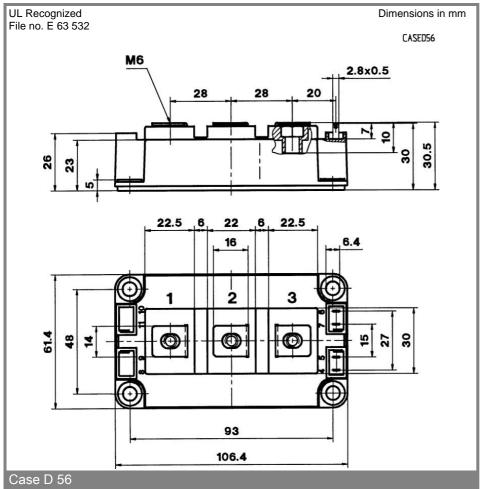


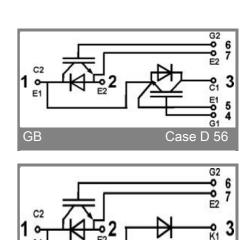


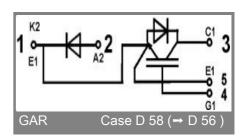












Case D 57 (→ D 56)

GAI

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.