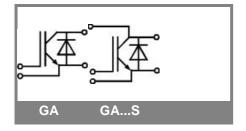
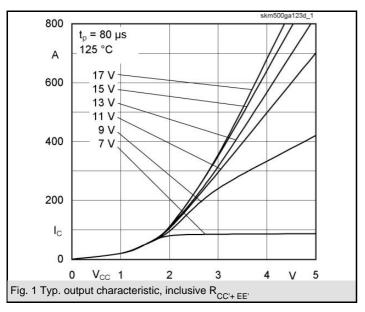


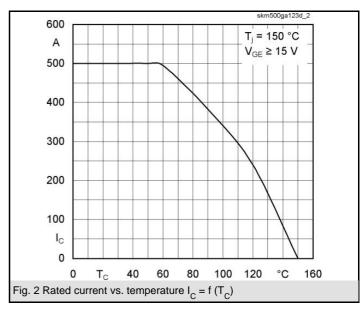
IGBT Modules

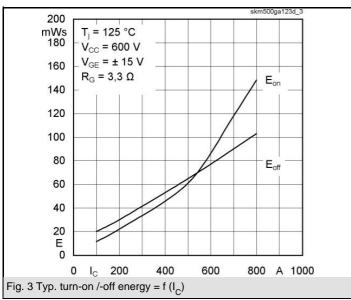
SKM 500GA123D SKM 500GA123DS

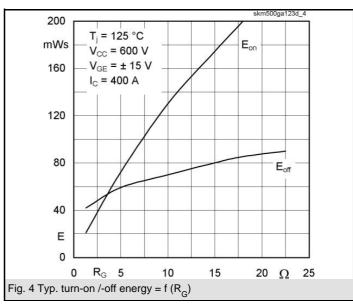
Features

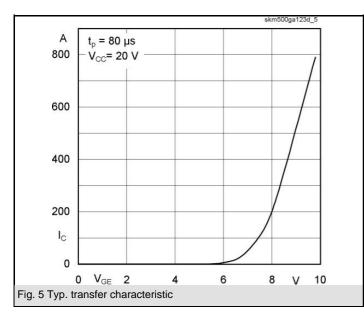

- MOS input (voltage controlled)
- N channel, homgeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- . Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

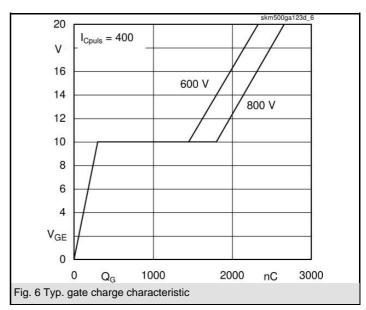

Typical Applications

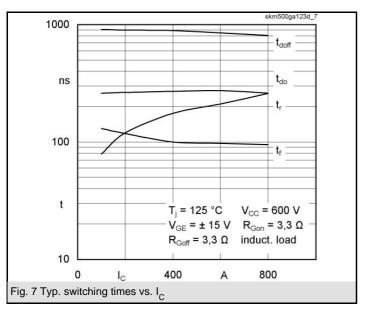

• Switching (not for linear use)

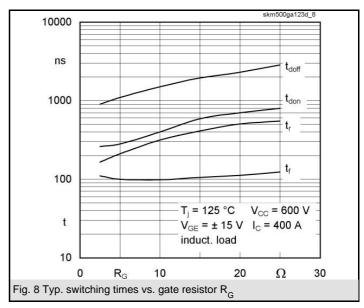

Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise	T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V _{CES}	$T_c = 25 (80) ^{\circ}C$	500 (420)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	1000 (840)	Α					
V_{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40+ 150 (125)	°C					
V_{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	$T_c = 25 (80) ^{\circ}C$	500 (350)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	1000 (840)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	3600	Α					

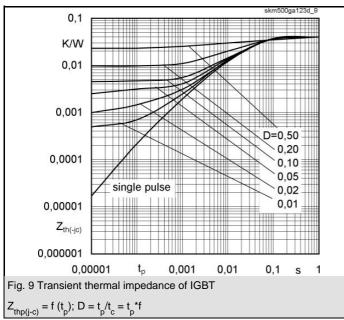

Characte	ristics	T _c = 25 °C,	c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 16 \text{ mA}$	4,5	5,5	6,5	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) ^{\circ}C$		0,1	0,3	mA		
V _{CE(TO)}	T _j = 25 (125) °C		1,4 (1,6)		V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		2,75 (3,75)	3,5 (4,75)	$m\Omega$		
V _{CE(sat)}	$I_C = 400 \text{ A}, V_{GE} = 15 \text{ V}, \text{ chip level}$		2,5 (3,1)	3 (3,7)	V		
C _{ies}	under following conditions		26	40	nF		
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25 \text{ V}$, $f = 1 \text{ MHz}$		4	5,2	nF		
C _{res}			2	2,6	nF		
L _{CE}				20	nΗ		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _C = 400 A		250	600	ns		
t _r `	$R_{Gon} = R_{Goff} = 3.3 \Omega$, $T_j = 125 °C$		170	340	ns		
$t_{d(off)}$	V _{GE} = ± 15 V		900	1100	ns		
t _f			100	125	ns		
$E_{on} \left(E_{off} \right)$			45 (53)		mJ		
Inverse d	Inverse diode						
$V_F = V_{EC}$	$I_F = 400 \text{ A}; V_{GE} = 0 \text{ V}; T_i = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,5	V		
V _(TO)	T _j = 125 () °C			1,2	V		
r _T	T _j = 125 () °C		1,5	3	mΩ		
I _{RRM}	$I_F = 400 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$		90 (160)		Α		
Q_{rr}	di/dt = 2000 A/μs		15 (50)		μC		
E _{rr}	V _{GE} = V				mJ		
Thermal of	characteristics						
R _{th(j-c)}	per IGBT			0,041	K/W		
R _{th(j-c)D}	per Inverse Diode			0,09	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanical data							
M_s	to heatsink M6	3		5	Nm		
M _t	to terminals M6, M4				Nm		
w				330	g		

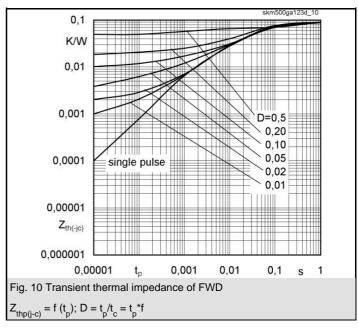


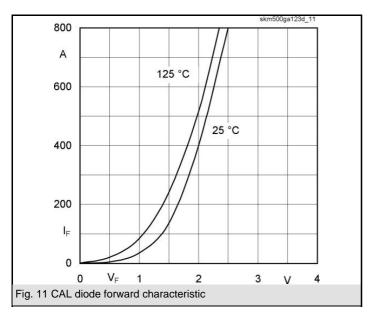


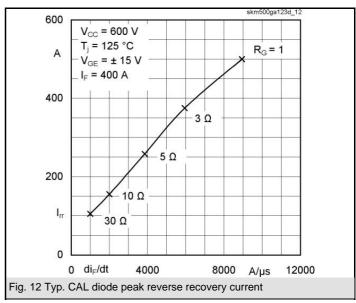


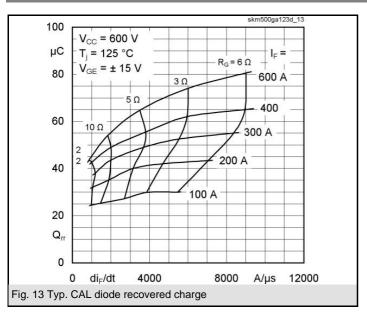


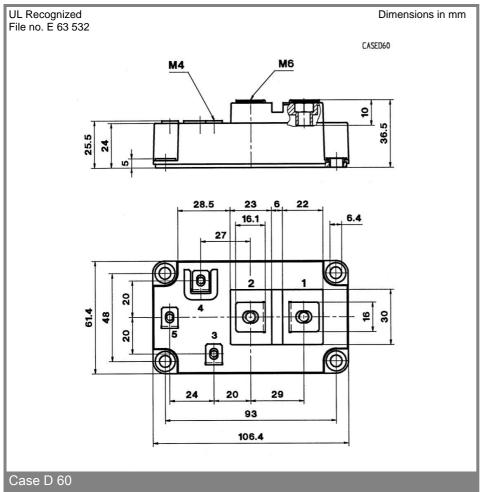


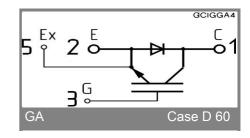












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.