SKM 800GA125D

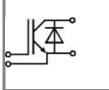
SEMITRANSTM 3

Ultrafast IGBT Modules

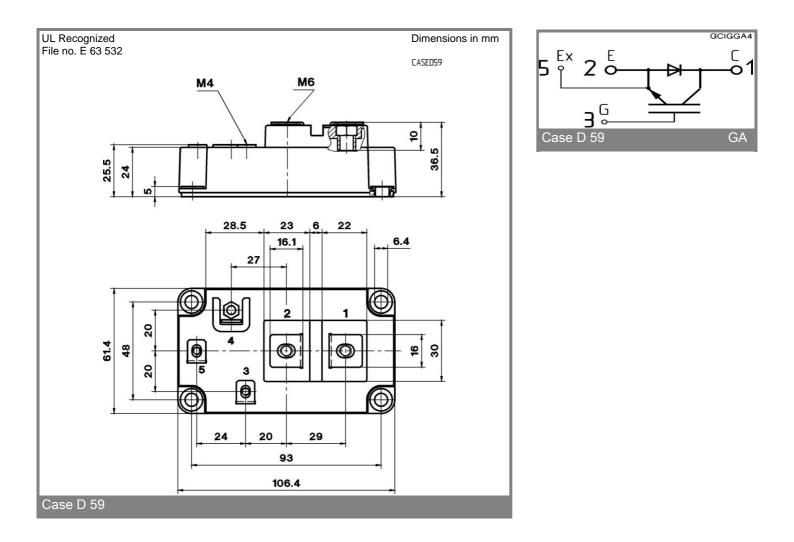
Features

- Homogeneous Si
- NPT-IGBT
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications


- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at fsw > 20 kHz

Remarks


- I_{DC} ≤ 500 A limited by terminals
 Take care of over-voltage caused
- Take care of over-voltage caused by stray inductances

Absolute Maximum Ratings		T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V _{CES}		1200	V					
I _C	T _c = 25 (80) °C	760 (530)	А					
ICRM	T _c = 25 (80) °C, t _p = 1 ms	1520 (1060)	А					
V _{GES}		± 20	V					
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 +150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	720 (500)	А					
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	1520 (1060)	А					
I _{FSM}	t _p = 10 ms; sin.; T _i = 150 °C	5000	А					

Characteristics T _{case} = 25°C, unless otherwise specifie						
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 24 \text{ mA}$	4,5	5,5	6,5	V	
ICES	V _{GE} = 0, V _{CE} = V _{CES} , T _j = 25 (125) °C		0,2	0,6	mA	
V _{CE(TO)}	T _j = 25 (125) °C		1,5 (1,7)	1,75 (1,3)	V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		2,8 (3,8)	3,3 (5,4)	mΩ	
V _{CE(sat)}	$I_{\rm C}$ = 600 A, $V_{\rm GE}$ = 15 V, chip level		3,2 (4)	3,75 (4,55)	V	
C _{ies}	under following conditions		37		nF	
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		5,6		nF	
C _{res}			2,8		nF	
L _{CE}				20	nH	
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ	
t _{d(on)}	V _{CC} = 600 V, I _C = 600 A				ns	
t _r	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \ ^{\circ}C$				ns	
t _{d(off)}	V _{GE} ± 15 V				ns	
t _f					ns	
E _{on} (E _{off})			52 (26)		mJ	
Inverse diode						
$V_F = V_{EC}$	I _F = 600 A; V _{GE} = 0 V; T _j = 25 (125) °C		2,3 (2,1)	2,5 (2,3)	V	
V _(TO)	$T_j = 25 (125) \ ^{\circ}C$		1,1 (0,9)	1,3 (1,05)	V	
r _T	$T_{j} = 25 (125) \ ^{\circ}C$		2 (2)	2 (2,1)	mΩ	
I _{RRM}	I _F = 600 A; T _j = 25 (125) °C				А	
Q _{rr}	di/dt = A/µs				μC	
Err	$V_{GE} = 0 V$				mJ	
Thermal of	characteristics					
R _{th(j-c)}	per IGBT			0,03	K/W	
R _{th(j-c)D}	per Inverse Diode			0,07	K/W	
R _{th(c-s)}	per module			0,038	K/W	
Mechanic	al data	•				
M _s	to heatsink M6	3		5	Nm	
M _t	to terminals (M6(M4)	2,5 (1,1)		5 (2)	Nm	
w				330	g	

GA

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.