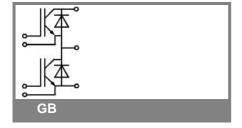
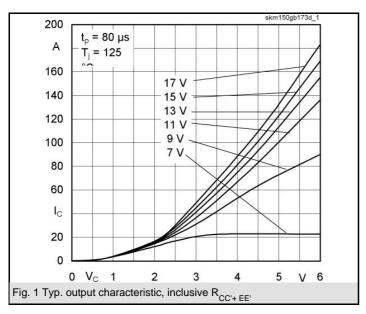


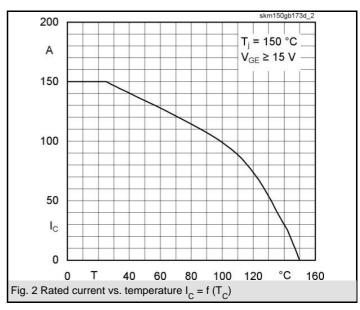
IGBT Modules

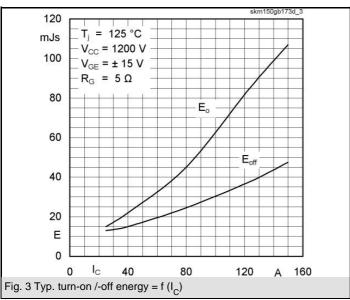
SKM 150GB173D

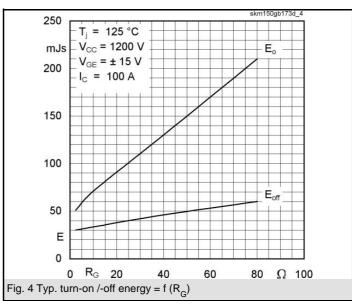
Features

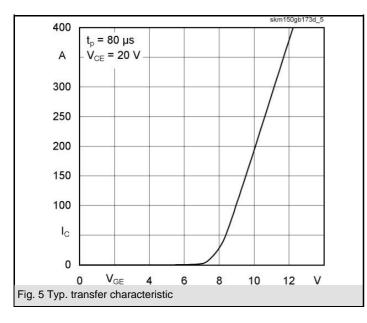

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperatute dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding**
- Large clearance (13 mm) and creepage distances (20 mm)

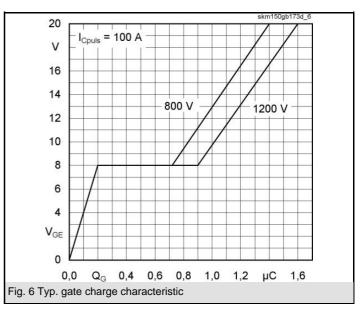

Typical Applications

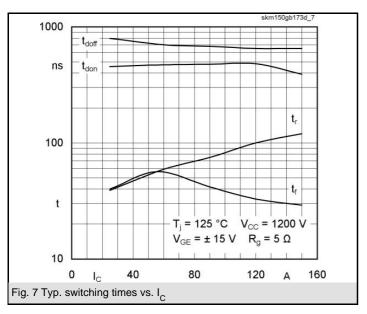

- AC inverter drives on mains 575 -750 V_{AC}
- DC bus voltage 750 1200 V_{DC} Public transport (auxiliary syst.)
- Switching (not for linear use)

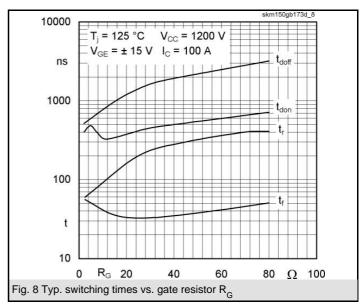

Absolute Maximum Ratings		T_c = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1700	V					
V _{CES} I _C	T _c = 25 (80) °C	150 (100)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	300 (200)	Α					
V_{GES}	·	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	125 (80)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	300 (200)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	1100	Α					

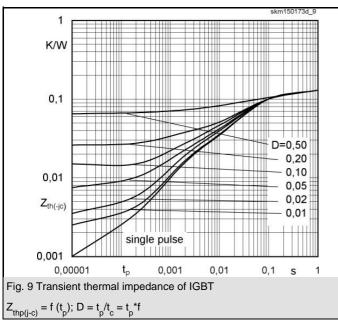

Charastar	inting	T = 25 °C	c = 25 °C, unless otherwise specified			
		•				
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	4,8	5,5	6,2	V	
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,1	0,3	mA	
V _{CE(TO)}	T _j = 25 (125) °C		1,65 (1,9)		V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		17,5 (23)	20 (28,5)	mΩ	
V _{CE(sat)}	I_C = 100 A, V_{GE} = 15 V, chip level		3,4 (4,2)	3,9 (5)	V	
C _{ies}	under following conditions		16		nF	
C _{oes}	$V_{GE} = 0, V_{CE} = 25 V, f = 1 MHz$		1,3		nF	
C _{res}			0,5		nF	
L _{CE}				20	nH	
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ	
t _{d(on)}	V _{CC} = 1200 V, I _C = 100 A		470		ns	
t _r	$R_{Gon} = R_{Goff} = 5 \Omega, T_j = 125 °C$		90		ns	
t _{d(off)}	V _{GE} = ± 15 V		650		ns	
t _f			50		ns	
$E_{on} (E_{off})$			60 (32)		mJ	
Inverse diode						
	$I_F = 100 \text{ A}; V_{GE} = 0 \text{ V}; T_j = 25 (125) ^{\circ}\text{C}$		2,2 (1,9)	2,7 (2,4)	V	
V _(TO)	T _j = 125 () °C		1,2	1,5	V	
r _T	T _j = 125 () °C		7	9	mΩ	
I _{RRM}	I _F = 100 A; T _j = 25 (125) °C		50 (70)		Α	
Q_{rr}	di/dt = 1000 A/µs		10 (27)		μC	
E _{rr}	V _{GE} = V				mJ	
Thermal characteristics						
R _{th(i-c)}	per IGBT			0,125	K/W	
R _{th(j-c)D}	per Inverse Diode			0,4	K/W	
R _{th(c-s)}	per module			0,038	K/W	
Mechanica	al data	•				
M _s	to heatsink M6	3		5	Nm	
M _t	to terminals M6	2,5		5	Nm	
w				325	g	

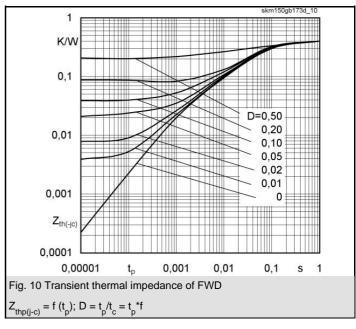


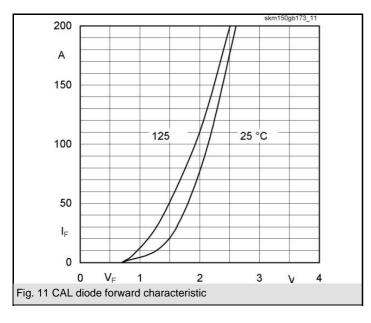


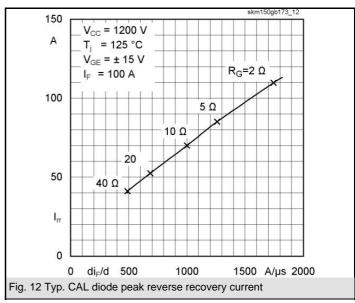


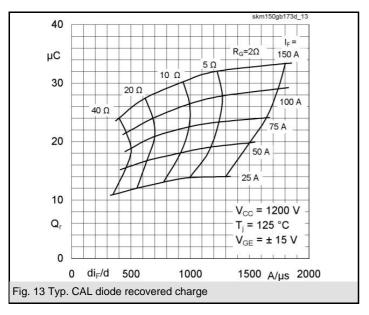


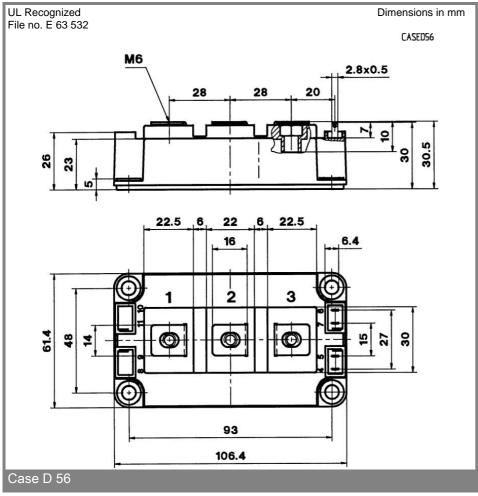


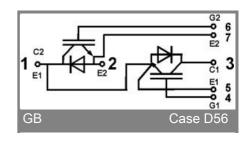












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.