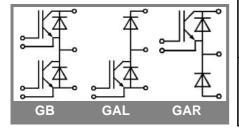
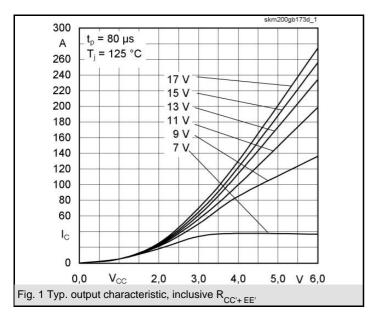


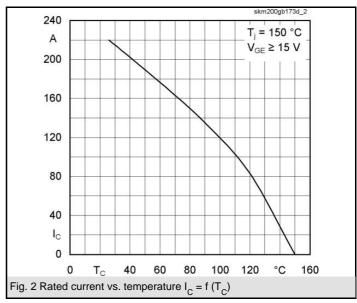
IGBT Modules

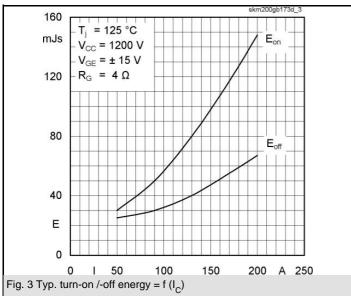

SKM 200GB173D SKM 200GB173D1 SKM 200GAL173D SKM 200GAR173D

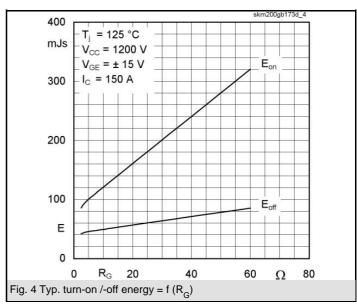
Features

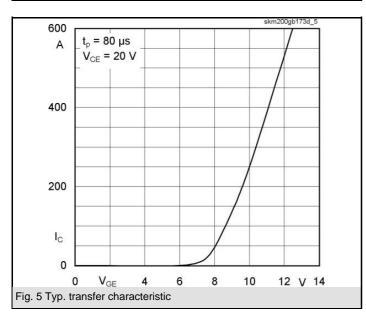
- MOS input (voltage controlled)
- N channel , Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

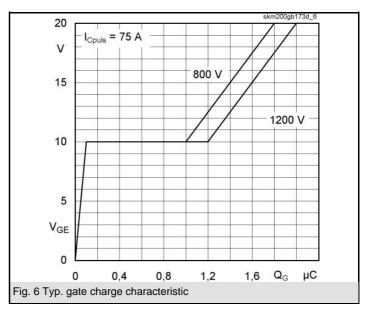

Typical Applications

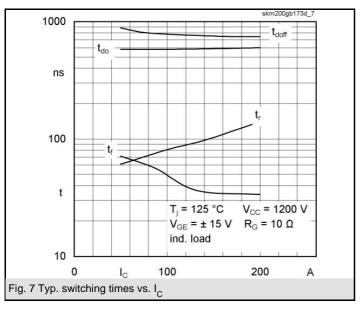

- AC inverter drives on mains 575 - 750 V_AC
- DC bus voltage 750 1200 V_{DC}
- Public transport (auxiliary syst.)
- Switching (not for linear use)

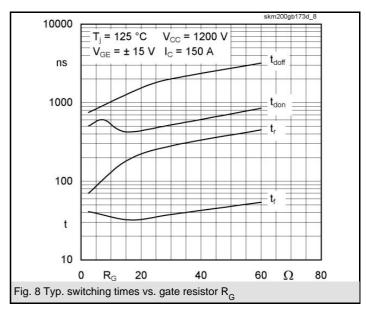


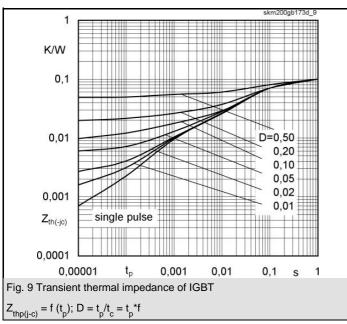

Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise	T _c = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1700	V				
I _C	T _c = 25 (80) °C	220 (150)	Α				
I _{CRM}	$T_c = 25 (80) ^{\circ}C, t_p = 1 \text{ms}$	440 (300)	Α				
V_{GES}	·	± 20	V				
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	4000	V				
Inverse diode							
I _F	T _c = 25 (80) °C	150 (100)	Α				
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	400 (300)	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	1450	Α				
Freewheeling diode							
I _F	T _c = 25 (80) °C	230 (150)	Α				
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	400 (300)	Α				
I _{FSM}	$t_p = 10 \text{ ms; sin; } T_j = 150 \text{ °C}$	2200	А				

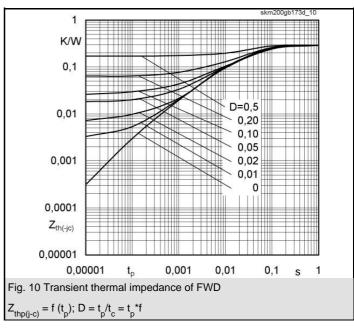

Characteristics		T _c = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 10 \text{ mA}$	4,8	5,5	6,2	V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_j = 25 (125) °C$		0,1	0,3	mA		
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1,65 (1,9)	1,9 (2,15)	V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		11,7 (17,3)	13,3 (19)	mΩ		
V _{CE(sat)}	I_C = 150 A, V_{GE} = 15 V, chip level		3,4 (4,5)	3,9 (5)	V		
C _{ies}	under following conditions		20		nF _		
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		2		nF		
C _{res}			0,55	20	nF		
L _{CE}	05 (405) 80		0.05 (0.5)	20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	$V_{CC} = 1200 \text{ V}, I_{C} = 150 \text{ A}$		580		ns		
t _r	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 °C$		100 750		ns		
t _{d(off)}	V _{GE} = ± 15 V		40		ns ns		
t _f			95 (45)		mJ		
E _{on} (E _{off})	<u> </u>		93 (43)		1110		
Inverse d		1	0.0 (4.0)	0.7	1		
$V_F = V_{EC}$	$I_F = 150 \text{ A; V}_{GE} = 0 \text{ V; T}_j = 25 (125) ^{\circ}\text{C}$		2,2 (1,9)	2,7	V		
V _(TO)	T _j = 125 () °C T _i = 125 () °C		1,3 4,5	1,5 6,2	v mΩ		
r _T I _{RRM}	I _F = 150 A; T _i = 25 (125) °C		4,3 60 (85)	0,2	A		
Q _{rr}	di/dt = 1000 A/µs		15 (38)		μC		
E _{rr}	V _{GE} = V		` ,		mJ		
FWD							
$V_F = V_{EC}$	$I_F = 150 \text{ A}; V_{GE} = 0 \text{ V}, T_i = 25 (125) ^{\circ}\text{C}$		2 (1,8)	2,4	V		
V _(TO)	T _i = 125 () °C		1,3	1,5	V		
r _T	T _i = 125 () °C		3,5	4,5	mΩ		
I _{RRM}	I _F = 150 A; T _j = 25 (125) °C		75 (110)		Α		
Q_{rr}	di/dt = A/μs		20 (50)		μC		
E _{rr}	V _{GE} = V				mJ		
Thermal of	characteristics						
R _{th(j-c)}	per IGBT			0,1	K/W		
$R_{th(j-c)D}$	per Inverse Diode			0,32	K/W		
R _{th(j-c)FD}	per FWD			0,21	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanic		•					
M _s	to heatsink M6	3		5	Nm		
M _t	to terminals M6				Nm		
w				325	g		

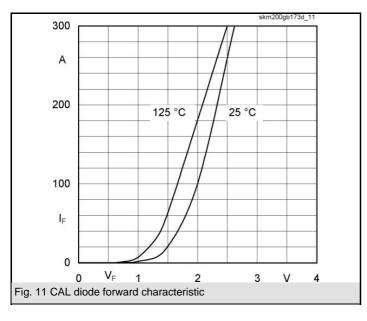


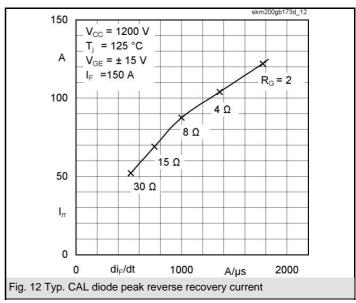


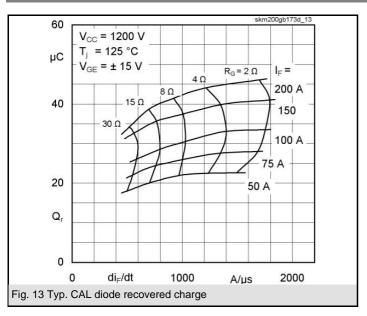


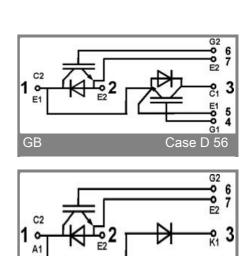


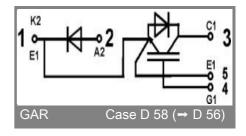












Case D 57 (→ D 56)

GAI

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.