

SEMITRANSTM 4

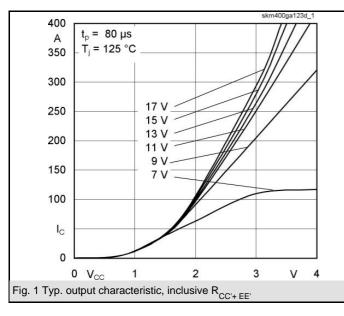
IGBT Modules

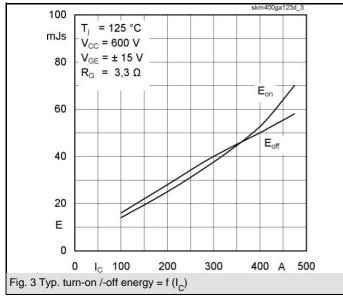
SKM 400GA123D

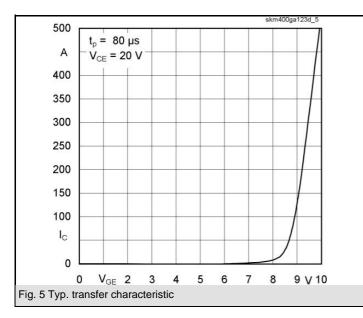
Features

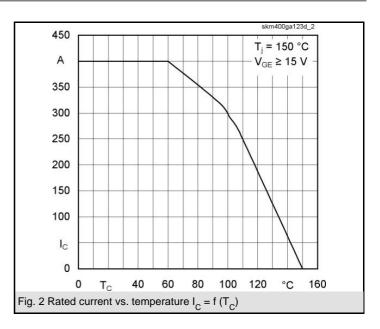
- MOS input (voltage controlled)
- N channel, homgeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

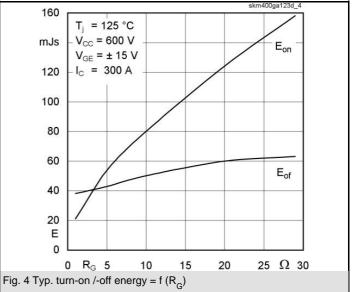
Typical Applications

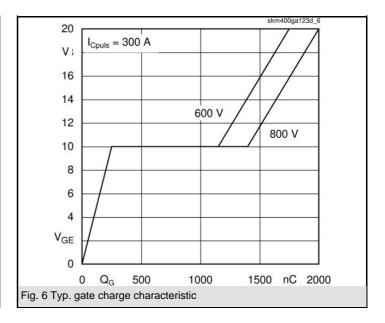

• Switching (not for linear use)

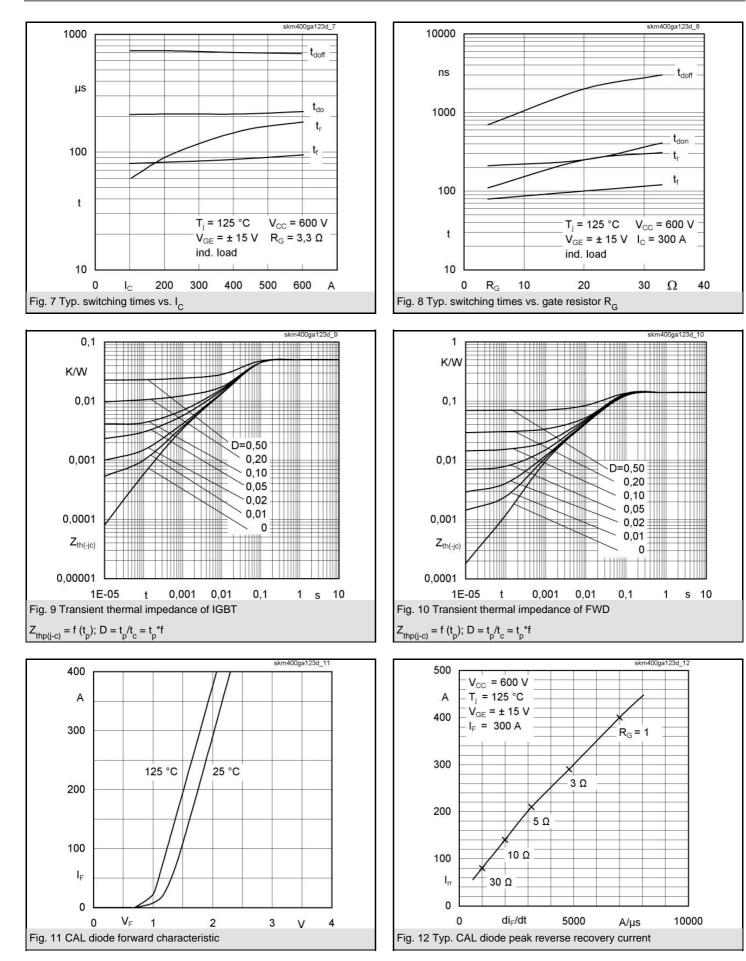

Absolute Maximum Ratings		T _c = 25 °C, unless otherwise	$T_c = 25 \text{ °C}$, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V _{CES}		1200	V					
I _C	T _c = 25 (80) °C	400 (360)	А					
I _{CRM}	T _c = 25 (80) °C, t _p = 1 ms	800 (720)	А					
V _{GES}	- F	± 20	V					
T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	390 (260)	А					
I _{FRM}	T _c = 25 (80) °C, t _p = 1 ms	800 (720)	А					
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	2900	А					

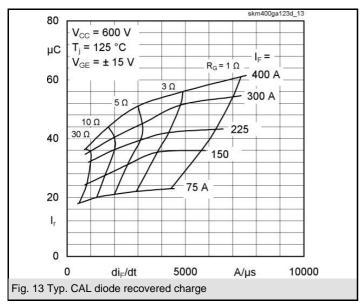

Characteristics $T_c = 25 \text{ °C}$, unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_{C} = 12 \text{ mA}$	4,5	5,5	6,5	V		
ICES	V _{GE} = 0, V _{CE} = V _{CES} , T _j = 25 (125) °C		0,1	0,3	mA		
V _{CE(TO)}	T _j = 25 (125) °C		1,4 (1,6)		V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		3,66 (5)	4,66 (6,33)	mΩ		
V _{CE(sat)}	$I_{\rm C}$ = 300 A, $V_{\rm GE}$ = 15 V, chip level		2,5 (3,1)	3 (3,7)	V		
Cies	under following conditions		22	30	nF		
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		3,3	4	nF		
C _{res}			1,2	1,6	nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ		
t _{d(on)}	V _{CC} = 600 V, I _C = 300 A		200	400	ns		
t,	R _{Gon} = R _{Goff} = 3,3 Ω, T _i = 125 °C		115	220	ns		
t _{d(off)}	V _{GE} = ± 15 V		720	900	ns		
t _f			80	100	ns		
$E_{on} \left(E_{off} \right)$			38 (40)		mJ		
Inverse diode							
V _F = V _{EC}	I _F = 300 A; V _{GE} = 0 V; T _i = 25 (125) °C		2 (1,8)	2,5	V		
V _(TO)	T _j = 125 () °C			1,2	V		
r _T	T _j = 125 () °C		2,5	3,5	mΩ		
I _{RRM}	I _F = 300 A; T _j = 25 (125) °C		85 (140)		Α		
Q _{rr}	di/dt = 2000 A/µs		13 (40)		μC		
E _{rr}	$V_{GE} = V$				mJ		
Thermal	characteristics						
R _{th(j-c)}	per IGBT			0,045	K/W		
R _{th(j-c)D}	per Inverse Diode			0,125	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanic	cal data						
M _s	to heatsink M6	3		5	Nm		
M _t	to terminals M6, M4	2,5		5	Nm		
W				330	g		
					1		

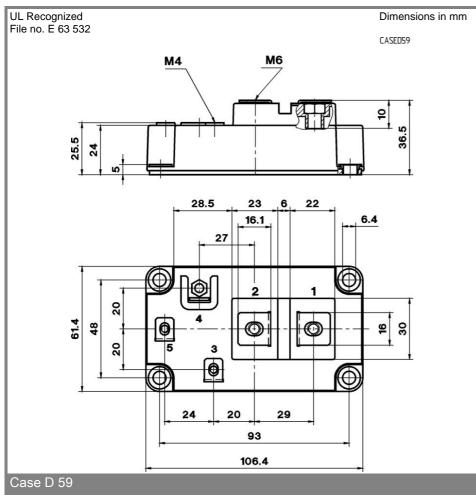


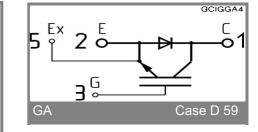

GA











29-07-2004 SCT

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.