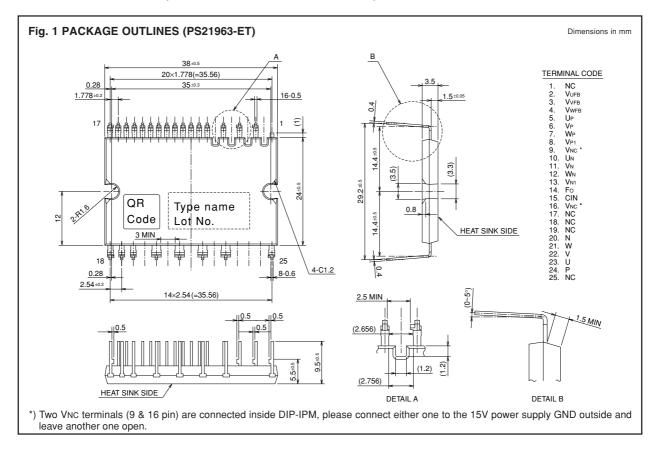
MITSUBISHI SEMICONDUCTOR < Dual-In-Line Package Intelligent Power Module>

PS21963-ET/-AET/-CET/-ETW

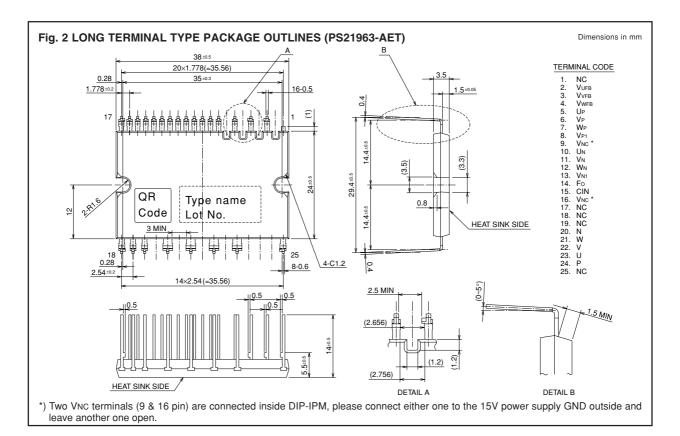
TRANSFER-MOLD TYPE INSULATED TYPE

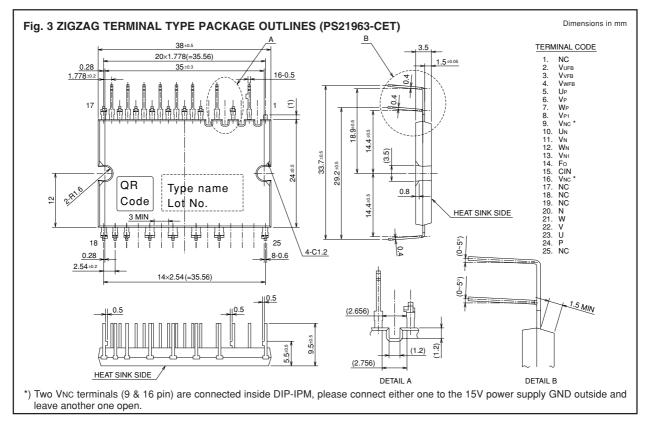
INTEGRATED POWER FUNCTIONS

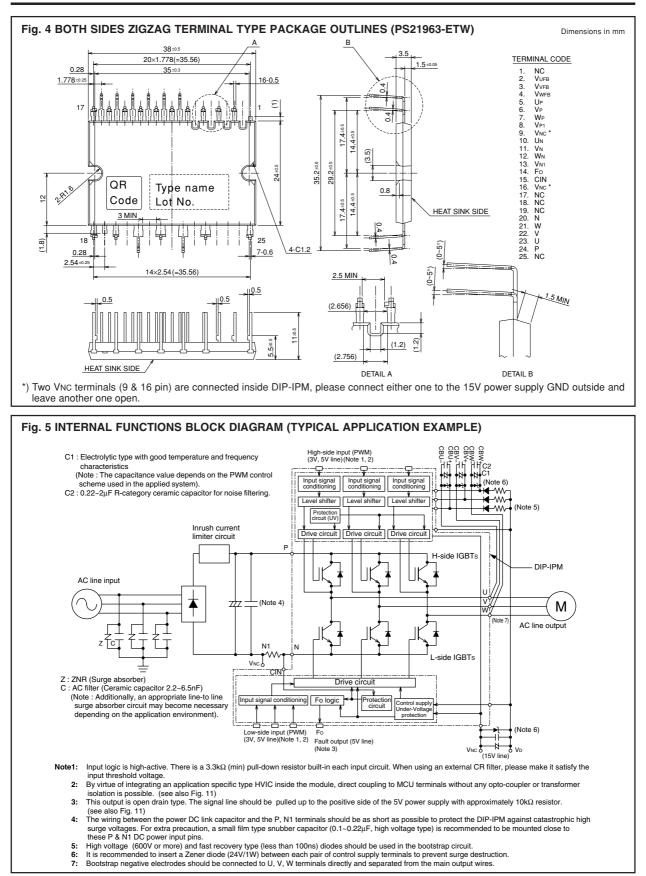

600V/8A low-loss CSTBTTM inverter bridge for three phase DC-to-AC power conversion

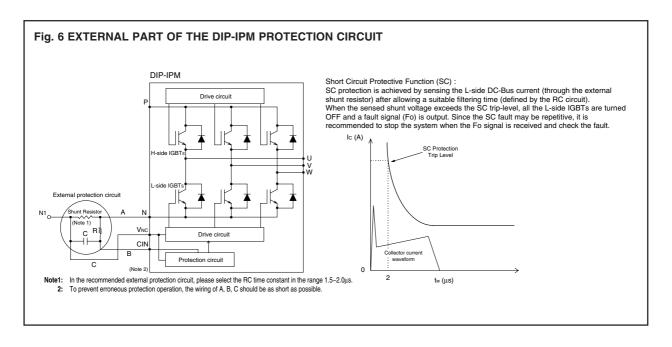
INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For upper-leg IGBTs : Drive circuit, High voltage high-speed level shifting, Control supply under-voltage (UV) protection.
- For lower-leg IGBTs : Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC), Over temperature protection (OT).
- Fault signaling : Corresponding to an SC fault (Lower-leg IGBT), a UV fault (Lower-side supply) or an OT fault (LVIC temperature).
- Input interface : 3V, 5V line (High Active).
- UL Approved : Yellow Card No. E80276


APPLICATION


AC100V~200V three-phase inverter drive for small power motor control.


TRANSFER-MOLD TYPE INSULATED TYPE



TRANSFER-MOLD TYPE INSULATED TYPE

TRANSFER-MOLD TYPE INSULATED TYPE

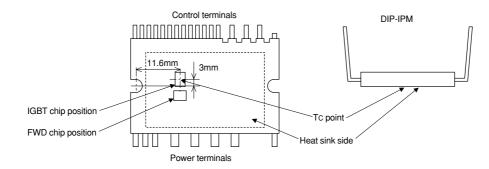
MAXIMUM RATINGS ($T_j = 25^{\circ}C$, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Condition		Ratings	Unit
Vcc	Supply voltage	Applied between P-N		450	V
VCC(surge)	Supply voltage (surge)	Applied between P-N		500	V
VCES	Collector-emitter voltage			600	V
±lc	Each IGBT collector current	Tc = 25°C		8	A
±ICΡ	Each IGBT collector current (peak)	Tc = 25°C, less than 1ms		16	A
Pc	Collector dissipation	$Tc = 25^{\circ}C$, per 1 chip		24.3	W
Tj	Junction temperature		(Note 1)	-20~+125	°C

Note 1: The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150°C (@ $Tc \le 100^{\circ}C$). However, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to $T_{j(ave)} \le 125^{\circ}C$ (@ $Tc \le 100^{\circ}C$).

CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
Vd	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
Vdb	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-W	20	V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between FO-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V



TRANSFER-MOLD TYPE INSULATED TYPE

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$V_D = 13.5 \sim 16.5 V$, Inverter part T _j = 125°C, non-repetitive, less than 2µs	400	V
Тс	Module case operation temperature	(Note 2)	-20~+100	°C
Tstg	Storage temperature		-40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, 1 minute, Between pins and heat-sink plate	1500	Vrms

Note 2: Tc measurement point

THERMAL RESISTANCE

Symbol	Paramatar	Condition		Limits		
Symbol Pa	Parameter	Condition	Min.	Тур.	Max.	Unit
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)	—	—	4.1	°C/W
Rth(j-c)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)		_	5.4	°C/W

Note 3: Grease with good thermal conductivity should be applied evenly with about +100μm~+200μm on the contacting surface of DIP-IPM and heat-sink.

The contacting thermal resistance between DIP-IPM case and heat sink (Rth(c-f)) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) (per 1/6 module) is about 0.3° C/W when the grease thickness is 20µm and the thermal conductivity is 1.0W/m·k.

ELECTRICAL CHARACTERISTICS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

Cumpheal	Devementar	Condition			Limits			
Symbol	Parameter			Min.	Тур.	Max.	Unit	
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	IC = 8A, Tj = 25°C		1.70	2.20		
voltage	VIN = 5V	IC = 8A, Tj = 125°C	—	1.80	2.30	V		
VEC	FWD forward voltage	$T_j = 25^{\circ}C, -IC = 8A, VIN = 0V$		—	1.90	2.35	V	
ton				0.60	1.10	1.70	μs	
trr		VCC = 300V, VD = VDB = 15V		—	0.30	—	μs	
tc(on)	Switching times	$IC = 8A, T_j = 125^{\circ}C, VIN = 0 \leftrightarrow 5V$		—	0.40	0.60	μs	
toff		Inductive load (upper-low	Inductive load (upper-lower arm)		1.40	2.00	μs	
tc(off)				—	0.40	0.75	μs	
ICES	Collector-emitter cut-off	VCE = VCES	Tj = 25°C	—	—	1	mA	
	current	VUE = VUES	Tj = 125°C	—	_	10	IIIA	

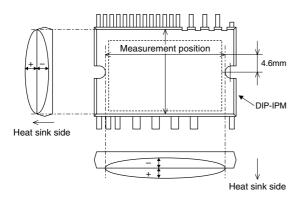
TRANSFER-MOLD TYPE INSULATED TYPE

CONTROL (PROTECTION) PART

Symbol	Parameter Condition		andition		Limits		Unit	
Symbol	Farameter		U	Shallon	Min.	Тур.	Max.	Onit
		VD = VDB = 15V	Total	of VP1-VNC, VN1-VNC	—	—	2.80	mA
ID	Circuit current	VIN = 5V	VUFB	-U, Vvfb-V, Vwfb-W	-	—	0.55	mA
		VD = VDB = 15V	Total	of VP1-VNC, VN1-VNC	—	—	2.80	mA
		VIN = 0V	VUFB	-U, Vvfb-V, Vwfb-W	_	—	0.55	mA
VFOH	- Fault output voltage	Vsc = 0V, Fo terminal pull-up to 5V by $10k\Omega$			4.9	—	—	V
VFOL	Fault output voltage	VSC = 1V, IFO = 1mA		-	—	0.95	V	
VSC(ref)	Short circuit trip level	$T_j = 25^{\circ}C, V_D = 15V$ (Note 4)		0.43	0.48	0.53	V	
lin	Input current	VIN = 5V		0.70	1.00	1.50	mA	
OTt	Over temperature protection	VD = 15V,		Trip level	100	120	140	°C
OTrh	(Note 5)	At temperature of	LVIC	Trip/reset hysteresis	-	10	—	
UVDBt				Trip level	10.0	—	12.0	V
UVDBr	Control supply under-voltage	Ti≤ 125°C		Reset level	10.5	—	12.5	V
UVDt	protection	1] = 125 0		Trip level	10.3	—	12.5	V
UVDr]			Reset level	10.8	—	13.0	V
tFO	Fault output pulse width			(Note 6)	20	—	—	μs
Vth(on)	ON threshold voltage				2.1	2.6	V	
Vth(off)	OFF threshold voltage	Applied between UP, VP, WP, UN, VN, WN-VNC			0.8	1.3	_	V
Vth(hys)	ON/OFF threshold hysteresis voltage				0.35	0.65	_	V

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating.

5: Over temperature protection (OT) outputs fault signal, when the LVIC temperature exceeds OT trip temperature level (OTt). In that case if the heat sink comes off DIP-IPM or fixed loosely, don't reuse that DIP-IPM. (There is a possibility that junction temperature of power chips exceeded maximum Tj (150°C)).

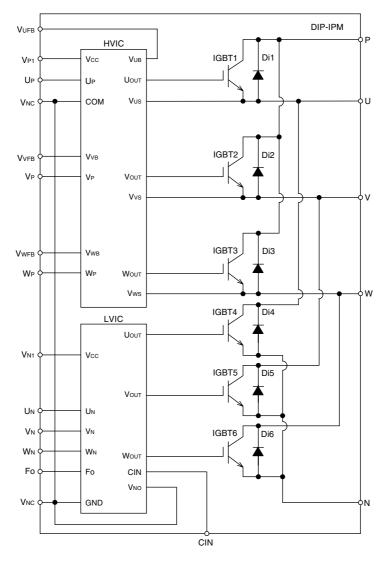

6: Fault signal is asserted only corresponding to a SC, a UV or an OT failure at lower side, and the Fo pulse width is different for each failure modes. For SC failure, Fo output is with a fixed width of 20µsec(min), but for UV or OT failure, Fo output continuously during the whole UV or OT period, however, the minimum Fo pulse width is 20µsec(min) for very short UV or OT period less than 20µsec.

MECHANICAL CHARACTERISTICS AND RATINGS

Deremeter	Gar	Condition		Limits			
Parameter	Conc	Condition			Max.	Unit	
Mounting torque	Mounting screw : M3 (Note 7)	Recommended : 0.69 N·m	0.59	_	0.78	N∙m	
Weight			—	10	—	g	
Heat-sink flatness	(Note 8)		-50	—	100	μm	

Note 7: Plain washers (ISO 7089~7094) are recommended.

Note 8: Flatness measurement position

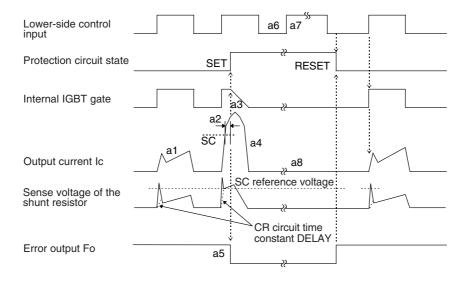

TRANSFER-MOLD TYPE INSULATED TYPE

RECOMMENDED OPERATION CONDITIONS

Cumhal	Parameter	Condition			Limits		Unit
Symbol Parameter		Condition			Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-N			300	400	V
Vd	Control supply voltage	Applied between VP1-VNC, VN1-VNC		13.5	15.0	16.5	V
Vdb	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-W			15.0	18.5	V
$\Delta VD, \Delta VDB$	Control supply variation				—	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tc ≤ 100°C			—	—	μs
fpwm	PWM input frequency	Tc ≤ 100°C, Tj ≤ 125°C			—	20	kHz
	Allowable r.m.s. current	VCC = 300V, $VD = VDB = 15V$, P.F = 0.8, sinusoidal PWM,	fpwm = 5kHz	—	—	4.0	Arms
lo	Allowable I.m.s. current	$T_{j} \leq 125^{\circ}C, T_{c} \leq 100^{\circ}C \qquad (Note 9)$	fPWM = 15kHz	—	_	2.5	AIIIS
PWIN(on)	Allowable minimum input				—	—	
PWIN(off)	pulse width	(Note 10)			—	—	μs
VNC	VNC variation	Between VNC-N (including surge)		-5.0	—	5.0	V

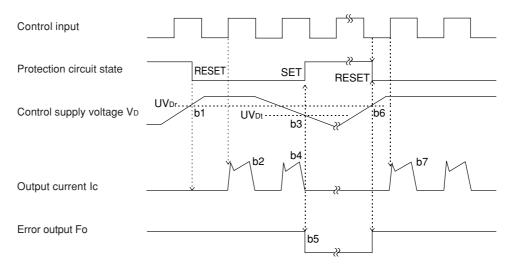
Note 9: The allowable r.m.s. current value depends on the actual application conditions. 10: IPM might not make response if the input signal pulse width is less than the recommended minimum value.

Fig. 7 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE INSULATED TYPE

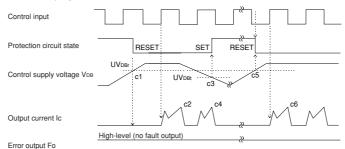
Fig. 8 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS


[A] Short-Circuit Protection (Lower-side only with the external shunt resistor and CR filter)

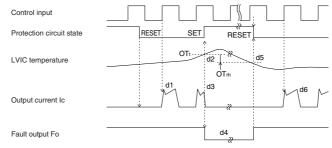
- a1. Normal operation : IGBT ON and carrying current.
- a2. Short circuit detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo outputs (tFO(min) = 20μ s).
- a6. Input "L" : IGBT OFF.
- a7. Input "H" : IGBT ON.
- a8. IGBT OFF in spite of input "H".

[B] Under-Voltage Protection (Lower-side, UVD)

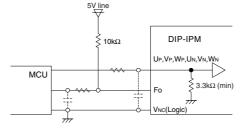
- b1. Control supply voltage rising : After the voltage level reaches UVDr, the circuits start to operate when next input is applied. b2. Normal operation : IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. FO outputs (tFO \ge 20µs and FO outputs continuously during UV period).
- b6. Under voltage reset (UVDr).b7. Normal operation : IGBT ON and carrying current.



TRANSFER-MOLD TYPE INSULATED TYPE

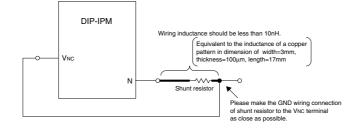

[C] Under-Voltage Protection (Upper-side, UVDB)

- c1. Control supply voltage rising : After the voltage level reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation : IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input signal level, but there is no Fo signal outputs.
- c5. Under voltage reset (UVDBr).
- c6. Normal operation : IGBT ON and carrying current.



[D] Over Temperature Protection (Lower-side, OT)

- d1. Normal operation : IGBT ON and carrying current.
- d2. LVIC temperature exceeds over temperature trip level (OTt).d3. IGBT OFF in spite of control input condition.
- d4. Fo outputs during over temperature period, however, the minimum pulse width is 20µs.
- d5. LVIC temperature becomes under over temperature reset level.
- d6. Circuits start to operate normally when next input is applied.


Fig. 9 RECOMMENDED MCU I/O INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a 3.3k Ω (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.

Fig. 10 WIRING CONNECTION OF SHUNT RESISTOR

TRANSFER-MOLD TYPE INSULATED TYPE

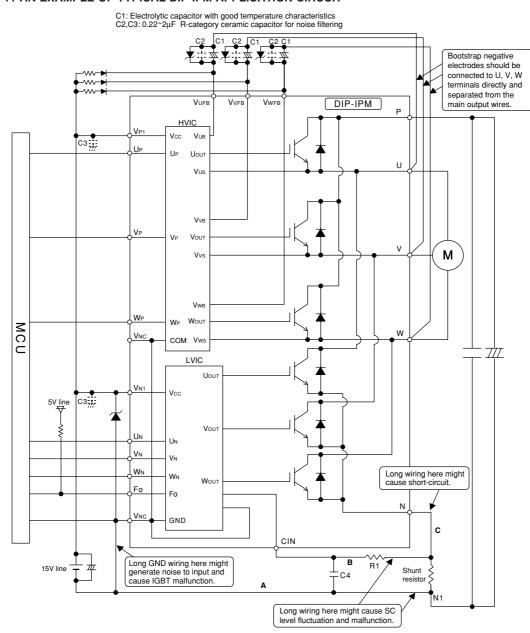


Fig. 11 AN EXAMPLE OF TYPICAL DIP-IPM APPLICATION CIRCUIT

- Note 1 : Input drive is High-Active type. There is a 3.3kΩ(min.) pull-down resistor integrated in the IC input circuit. To prevent malfunction, the wiring of each input should be as short as possible. When using RC coupling circuit, make sure the input signal level meet the turn-on and turn-off threshold voltage.
 - 2 : Thanks to HVIC inside the module, direct coupling to MCU without any opto-coupler or transformer isolation is possible.
 - 3 : Fo output is open drain type. It should be pulled up to the positive side of a 5V power supply by a resistor of about $10k\Omega$.
 - : To prevent erroneous protection, the wiring of A, B, C should be as short as possible.
 - 5 : The time constant R1C4 of the protection circuit should be selected in the range of 1.5-2µs. SC interrupting time might vary with the wiring pattern. Tight tolerance, temp-compensated type is recommended for R1, C4.
 - 6 :All capacitors should be mounted as close to the terminals of the DIP-IPM as possible. (C1: good temperature, frequency characteristic electrolytic type, and C2, C3: good temperature, frequency and DC bias characteristic ceramic type are recommended.)
 - 7 : To prevent surge destruction, the wiring between the smoothing capacitor and the P, N1 terminals should be as short as possible. Generally a 0.1-0.22µF snubber between the P-N1 terminals is recommended.
 - : Two VNc terminals (9 & 16 pin) are connected inside DIP-IPM, please connect either one to the 15V power supply GND outside and 8 leave another one open.
 - : It is recommended to insert a Zener diode (24V/1W) between each pair of control supply terminals to prevent surge destruction. 9
 - 10: If control GND is connected to power GND by broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect control GND and power GND at only a point.

